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Abstract

Al Zn alloy and multilayer TIN/TYTIN thin coatings were deposited on DU 0.75Ti alloy specimiens by a1 cathodic are plasma
physical vapor deposition process. The guality, soundness and adhesion of the coatings to the substrate were evaluated by
itutomatic scrateh testing. in combination with optical and scanning clectron microscopy examination of the seratch morphology .
The galvanic corrosion behavior of DU 0.75Ti alloy coupled to the coated alloys and aluminum atloy 7075-T6 was albso
investigiated by electrochemical tests in a 0.5 N NaCl agueous solution,

1. Introduction

In a previous study [1] of various coatings deposited
on DU -0.75Ti alloy (where DU means depleted uranium
and where the composition is in weight per cent) by a
cathodic arc plasma physical vapor deposition (PVD)
process using elemental targets. Al-Zn coatings were
found to be anodic (sacrificial) with useful life governed
by their thickness and integrity. Titanium and TiN
coatings. on the contrary. were found to be cathodic:
hence to be effective they must be defect free. Surface
morphology studies by scanning electron microscopy
(SEM), as well as electrochemical polarization and
long-term immersion tests in aecrated 3.5 wt."» NaCl
aqueous solution indicated that Al-Zn alloy is the best
of four metallic sacrificial coatings tested for improving
the corrosion resistance of DU -0.75Ti. In a subsequent
evaluation|[2]of the adhesion. soundness and comparative
quality of various coatings by automatic scratch testing
in combination with optical and SEM observations of
the scratch and the adjacent coating surface. it was
concluded that (1) alloyed metallic coatings. Al-Zn and
Al-Mg.on DU -0.75Ti specimens exhibit higher cohesive
and adhesive (critical) loads than do elemental coatings.
such as aluminum, zinc, magnesium and titanium (these
anodic coatings adhere well to the substrate and offer
excellent protection) and (2) TiN and the dual-layer
Al/TiN coatings also exhibit good cohesion and adherence
to the substrate (however, unless such cathodic coatings
are defect free they will perform rather poorly).

0257-8972/91/83.50

The relative mechanical strength of coatings and of the
coating - substrate interfaces may be conveniently evalu-
ated by scratch testing. This procedure consists of
progressively straining the substrate by deforming the
coating - substrate intertace with a diamond indenter and
evaluating the cohesive load L . which is the minimum
load required for crack initiation within the coating. as
well as the adhesive load L . which is the minimum load
at which the coating is detached from the substrate [3-7].
The interpretation of the critical loads for coating
cohesion and adhesion has been analyzed by Steinmann
et al. [8] and applied previously to similar systems [2).

The aim of the present investigation was to evaluate
turther the quality. soundness. adherence and the galvanic
corrosion behavior of the two most promising coatings:
Al-Zn alloy and multilayer TiN/Ti/TiN on DU -0.75Ti
specimens. The cohesive and adhesive loads were deter-
mined using an automatic scratch testing apparatus.
in combination with microscopic observations of the
scratch and the adjacent coating surtice. The galvanic
corrosion behavior wits evaluated by electrochemical tests
in a 0.5 N NaCl aqueous solution in combination with
microscopic examination of corroded surtaces.

2. Experimental procedure
2.1. Specimen preparation

Disk specimens of DU -0.75Ti. 25.40 or 1589 mm in
diameter. and 6.35 or 3.18 mm thick respectively. were

¢ 1991 Flsevier Sequona, Lausanne
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prepared and coated by Nuclear Metals. Concord.
MA. using the cathodic arc plasma (PVD) process in a
Multi-Arc Vacuum System (Multi-Arc Vacuum  Sys-
tems. St. Paul. MN)., as previously described [2].
Whereas in the previous study [2] elemental aluminum
and zinc cathodes were used. the present study used
pre-alloyed Al-45wt." Zn targets (supplied by Bethle-
hem Steel Corporation. Bethlehem. PA). Higher zinc
evaporation rates make control of the coating compo-
sition rather difficult. Coated specimens 25.40 mm in
diameter in the as-received condition were used for
automatic scratch testing.

The galvanic corrosion behavior of DU-0.75Ti
coupled to the following alloys was studied: aluminum
alloy 7075. DU-0.75Ti coated with an Al-Zn alloy.
and DU-0.75Ti coated with a multilayered system
consisting of an inner TiN layer. an intermediate
titanium layer and an outer TiN layer. These speci-
mens were machined into disks with a diameter of
15.89 mm and thickness of 3.18 mm. The uncoated
DU and aluminum alloys were ground and polished
using 600 grit silicon carbide paper to a surface rough-
ness of about 0.25 ym r.m.s. After coating. the DU
disks were tested in the as-received condition. All spec-
imens were degreased in acetone. followed by a

methanol rinse and air dried prior to electrochemical

corrosion testing in a 0.5 N NaCl solution at room
temperature.

2.2, Specimen testing

The soundness and quality of 2540 mm diameter
coated specimens were evaluated primarily with a
CSEM-Revetest (Centre Suisse d’Electronique et de
Microtechnique, CSEM. CH-2007. Neuchitel. Switzer-
land) automatic scratch testing apparatus. The original
tip radius of the diamond indenter was 200 um. The
apparatus and testing procedure have been described
elsewhere [2.7]. In all tests the sample table transla-
tion speed was 10 mm min ' with a loading rate of
100 N min ' hence dL/dx = 10 N mm '. The acoustic
emission (AE) signal intensity. the frictional force F,
and the friction coefficient u* were plotted vs. applied
normal load F,,. The scratch track and coating surface
morphology in the vicinity of the scratch were exam-
ined by optical microscopy and SEM.

Galvanic coupling was accomplished by an electrical
short circuit between the sample electrodes 5 cm apart.
A PAR model 273 system tunctiouing as a zero-resis-
tance ammeter measured galvanic currents continuously
as a function of ume. The galvanic corrosion cell was
instrumented so that a positive current density indi-
cated that the DU-0.75Ti alloy was cathodic: con-
versely a negative value indicated anodic behavior. The
exposed areas of each anode and cathode pair were the
same. Post-test SEM examination and energy-dispersive

A1 Znand TiN Ti TiN coatings m DU

0.75 Ti allon

spectroscopy (EDS) analyses were performed for evi-
dence of corrosion.

Anodic and cathodic potentiodynamic polarization
scans of the each uncoupled specimen combination
were made to complement the galvanic coupling data.
The intersection of the anodic segment of the alloy
behaving as the anode of a couple and the cathodic
segment of the alloy behaving as cathode represented
the potential and current density generated by that
couple. The PAR potentiostat - galvanostat model 273
in conjunction with a PAR Softcorr 342 program was
used for the potentiodynamic polarization scans. A
scan rate of 0.3 mV s ' beginning at E_,, was used with
a reference saturated calomel electrode (SCE). and two
high density non-permeable graphite rod counterelec-
trodes;: a PAR standard flat specimen holder model
K105 with a sealing knife edge washed of Teflon ex-
posed | cm® of specimen area to the test solution.
Measurements began after immersion for | h to allow
specimens to stabilize.

3. Results and discussion

31 Quality. soundness and adhesion of the coatings

311 (Al -Zn)-coated DU -0.75Ti specimens

The coating thickness is fairly uniform with an aver-
age value of 8.33 um. as measured optically from trans-
verse sections (Fig. 1(a)). The surface morphology.
(Figs l(c)-1(e)) consists of an agglomeration of
spheroidal or flattened particles of a wide size distribu-
tion between about 1 and 35 pm. Defects such as pits
and micropores are also observed.

The variation in AE intensity. F, and p* vs. applied
normal load F, between 0 and 80 N s illustrated in
Fig. 2. For this particular scratch a cohesive load
L, =382 N. and adhesive (cntical) load L, =704 N
and an average friction coefficient p* = 0.41 were mea-
sured. Average values of L, =43.72N and L, = 68.64
N were determined (Table 1), using five scratches on
two specimens 25.4 mm in diameter.

With increasing load the coating deforms plastically
and the surface particles in the track gradually merge into
a single mass ( Fig. 1(¢)). The first microcracks within the
coating are observed at a load of about 37.9 N neur the
edges of the track (Fig. 1(d)). These transverse. pre-
sumably tensile microcracks form at a load of about 40 N
and appear to be parallel to the trailing edge of the
moving stylus. Longitudinal striations are obscrved all
along the track within the coating and toward the end
of the scratch within the substrate. Similar observations
may be seen in Fig. 1(¢) where a secondary system of very
fine microcracks exists at the edges of the scratch in
addition to the primary system within the track. Coating
debris appears to be smeared on the sides of the track.
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(Al-Zn)-coated DU-0.75T

»*, FRICTION COEFMCIENT

AE, ACOUSTIC EABSSION SIOMAL (arbitrary uniss)
¥, TANGENTIAL LOAD, 8

Fne NORMAL LOAD, N

(1)

t Znand TiN Ti TiN coanes i DU

0.75 T allny

(TINITHTIN)-costed 0DU-0.75T!

L Leeblo)Tin
LatsLla)TiNT AR J
Lazsla)TiTin

L LAsLa)TiNDY

AE, ACOUSTIC EMISSION SIGNAL (arbitrary unks)
#,. TANGENTIAL LOAD, M

(b)

Fig 2. AE signal mtensity, frictional force F, and friction cocflicient g* ov. normal load £, between 0 and 80N for ) (Al Zn)-coated and

tb) multilayer TiN/TUTiN-coated DU 0.75T1 specimens.

TABLE |. Average cohesive load. /1 .
and triction coetlicient u*

adhesive (critical) load 1o

(TiN:TiiTiNV-coated - DU G475

LitzLe W) 2718 N
[N AN 285N
Latslyg S217TN
A AN 62.73N
n* 0.34
(Al Zn)-coated DU 0.75T

L 272N
LA 6K.64 N
w* 0.4

Typical AE. F, and u* curves vs. F, between O and
80 N are illustrated in Fig. 2(b). For this particular
scratch the shape characteristics of AE and to a lesser
extent F, indicate that crack initiation within the upper
TiN layer occurs at L, = 27.5 N. The crack reaches the
interface between the upper TiN and titanium layers,
causing delamination at a load of L., =34.5N. It
subsequently propagates through the titanium layer.
reaching the Ti-lower TiN layer interface and causing
delamination at a load L., = 56.7 N. Finally. the crack
reaches the interface between the lower TiN layer and
the substrate and causes delamination at the critical
load. L., =649 N. Metallographic observations using
the golden color of TiN and silvery color of titanium
confirmed this interpretation of these measurements.

For the scratch in Fig. 2(b) the average ;* was (0.34.
Average values using six scratches are given in Table 1.

TiN debris and islands of exposed titanium middle
layer are illustrated in Fig. 3. In addition to longitudinal
striations, very fine transverse microcracks. parallel to
the trailing edge of the stylus and presumably tensile. are
observed in the scratch.

Comparison of the two coatings (Table 1) clearly
shows that (1) the cohesive load of the Al Zn ulloy
coating is noticeably higher than that of the upper TiN
layer in the multilayer TiN/Ti/TiN coating: and (2) the
critical or adhesive load of Al-Zn on DU - 0.75Ti is also
slightly higher than that of the multilayer coating. For
these tests all intrinsic parameters [ 2. 7. 8] that can affect
the critical load values were kept constant (dl..
dv =10 Nmin ' and the stylus tip radius of 200 pm
with not much tip wear during testing of this batch of
specimens). For the extrinsic parameters of substrate
hardness and roughness. prior to coating there were no
ditferences since all the substrate disks were sectioned
from the same rod using the same procedure. Also. the
coating thickness was roughly the sume. However, the
coating roughnesses. and thus the trictional forces and
the friction coefficients. were not the same. It would
therefore be speculative to generahize that Al- Zn coat-
ings adhere better to the substrate than do the multilaver
TiN/Ti/TiN coatings. None the less. in the latter the
three layers delaminate from cach other at substantially
lower loads. Thus it appears that. for the set of process
variable values used. the Al Zn coating is mechanically
superior to the multilayer TiN/Ti/TiN coating.
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Fig. 3. (a). (b) Optical micrographs of a scratch corresponding to normal loads of (1) 42

A Zn and TiN T TiN coutmgs in DU

0.75 T allen 9l

N oand (b) 792 N for multilayer TiN Ti TiN-

costed DU 0.75Ti specimens. (¢) SEM micrograph of the same scratch corresponding 10 a normal load of 356 N ( Magnifications:

(a) (b) 200x, (c) 750 x )

3.2. Galvanic corrosion hehavior
121 (DU-0.75Ti) v. (Al - Zn)-(coated DU -0,75Ti)
The current flow-time curve for this couple (Fig.
4(a)) falls in a relatively low current density range. The
initial current density drop indicates oxide film forma-
tion on the anode: this is followed by a gradual rise as

the oxide film was removed from the Al-Zn anode.
Several cycles in current density followed before a
steady state value of 10 pA cm ° (Table 2) was reached
after immersion for 70 h (2.5 x 10%s) in the 0.5 N NaCl
solution. The positive current density (Table 2) indi-
cated that Al-Zn was anodic and DU 0.75Ti was
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TABLE 2. £,,. E e and current density from polarization scans. and current density from galvanic couple measurements
E E upte Polarization Galvanic
(mV (SCE)) tmV (SCE)) current density current density
(pAcm ) (HAcm )
DU -735
DU vs. TiN-coated DU -297¢ -720 -5 -10
DU e¢s. Al alloy 7075 — 809" - 796 12 10
DU es. (Al Zn)-coated DU — 1138 - 1120 24 10

Positive current densities indicate that the DU is cathodic while negative values indicate that the DU is anodic for each couple.

*E...., for TiN-coated DU.
PE... lor aluminum alloy 7075.
*E.... for (Al Zn)-coated DU.

Core

cathodic. Figure 4(b) shows the results of polarization
measurements of Al-Zn as anode and DU-0.75Ti as
cathode. The extrapolated intersection of the anodic
and cathodic potentiials represents the potential and the
current density of the short-circuited galvanic couple.
Table 2 compares the values of the corrosion potentials
E... and the galvanic couple potential E . derived
from these polarization scans. These data show that
DU-0.75Ti is polarized significantly in the cathodic
direction and behaves as cathode. On the contrary,
E . upe fOr Al-Zn is slightly anodic to E.,. suggesting
that Al-Zn could support the anodic reaction. The
anodic curve for Al-Zn intersects the extrapolated
DU-0.75Ti cathodic curve along the oxygen reduction
region where concentration polarization becomes im-
portant as the reduction rate approaches the limiting
diffusion current density. A comparison of the mea-
sured galvanic current density and the current density
extrapolated from anodic and cathodic polarization
scans shows reasonable agreement (Table 2). Figure
4(d) is a scanning electron micrograph of the (Al-Zn)-
coated DU-0.75Ti specimen after galvanic corrosion
testing for 90 h in a 0.5 N NaCl solution. Also shown in
Fig. 4(c) is the EDS scan of the corroded surfaces. The
globular and mud-cracked corrosion products are
mainly aluminum or zinc chloride compounds. There
was no evidence of exposure of the underlying DU -
0.75Ti alloy. The EDS concentrations of the unexposed
Al-Zn alloy coating were 47 at.”» Al and 53 at.% Zn
which is in reasonable agreement with the original
composition of the Al-Zn alloy target used in cathodic
arc plasma PVD processing. Higher zinc evaporation
rates makes the slight zinc enrichment of the coating an
expected effect. Figure 4(e) shows the DU-0.75Ti
member of the couple after the same exposure in chlo-
ride solution. There is very little evidence of corrosion
indicative of the galvanic protection from the Al-Zn
coating.

..... (DU-0.75Ti) vs. (Multiluyer (TiN|Ti|TiN)-
coated DU -0.75Ti) .
Figure 5(a) represents the current flow characteristics

of this couple. The current density remained steady at
— 10 uA cm ““for 15 h (5.4 x 10? s) before a series of falls
and rises was observed until a pseudo-steady state value
of —15pA cm " was reached after exposure for about
110 h (3.9 x 10°5) to the chiloride solution. The negative
values shown in Table 2 indicated that the DU-0.75T
alloy behaved as the anodic member of this couple.

Figure 5(b) contains polarization scans of DU -0.75Ti
alloy as the anode and the coated alloy as cathode. A
comparison of £, with E_,, of the uncoupled alloys
(Table 2) revealed that DU -0.75Tt was polarized in the
anodic direction and therefore behaved as anode. The
(TiN/Ti/TiN)-coated alloy was significantly polarized in
the cathodic direction indicative of cathodic behavior.
The intersection of the anodic curve tor DU-0.75T1 and
the cathodic curve for the coated alloy occurs along the
region of the limiting current density of oxygen reduc-
tion where concentration polarization becomes impor-
tant. The good agreement between the measured
galvanic current density and the current density extrap-
olated from the anodic and cathodic polarization scans
is shown in Table 2.

Figures 5(¢) and S(d) contain micrographs of both
the DU-0.75Ti alloy and the multilavered coated
alloy surfaces (includes an EDS scan (Fig. 5(e)) after
galvanic corrosion testing for 110 days in the chloride
solution. The DU-0.75Ti alloy is completely covered
with corrosion products indicative of relatively severe
corrosion of this alloy. On the contrary the coated
alloy is relatively corrosion free except tor minor
amounts of white corrosion products which appear to
be chlorides. The silvery coating which is mainly tita-
nium (see the EDS scan) appears to have some poros-
ity and in these areas the EDS scan shows the presence
of some DU.
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A Zn and TiN|Ti|TiN coutmgs in DU 0.75 Ti alloy
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The galvanic current decreased tnitially to a very
low (close to zero) value and then gradually increased
to 15uAcm~° (Fig. 6). later decreasing back to a
steady state value of 10 pA cm~2 after exposure for
about 100 h (3.6 x 10°s). The fluctuations in current
observed after exposure for 40h (1.4 x 10°s) were
probably due to pitting of the aluminum alloy 7075.
The positive current density shown in Table 2 indi-
cated that aluminum alloy 7075 was anodic to DU-
0.75Ti. Polarization scans for aluminum alloy 7075 as
anode and DU-0.75Ti as cathode are displayed in
Fig. 6(b). A comparison of E_,, and E.,n. derived
from these scans (Table 2) shows that the DU-0.75Ti
was not significantly polarized and the aluminum alloy
7075 was only slightly anodic to E_.. which suggests
that this alloy would support both cathodic and an-
odic reactions. The anodic curve for aluminum alloy
7075 intersects the DU-0.75Ti curve along the region
of the limiting current density of oxygen reduction.
Table 2 shows good agreement between the measured
galvanic current density and the current density ex-
trapolated from anodic and cathodic polarization
scans. Mclntyre er al {9] have also studied the (DU-
0.75Ti) - Al alloy 7075-Té couple for a 1:1 area ratio.
They reported that the DU-0.75Ti behaved as the
anode during the initial immersion for 72 h but. after
72 h. the current reversed and the DU-0.75Ti became
the cathode. 1i:~refore it is not surprising to see DU~
0.75Ti behaving as either cathode or anode when cou-
pled to aluminum alloy 7075-T6 depending upon the
specific experimental conditions.

Figures 6(c)-6(f) contain micrographs and EDS
scans of both members of the couple after exposure
for 110h to the chloride solutions. The aluminum

alloy exhibited severe pitting. Corrosion products
present are in the main chlorides and oxides. The
DU -0.75Ti exhibited only slight corrosion in the form
of oxides with trace amounts or chlorides.

4. Conclusions

Al-Zn alloy coatings on DU -0.75Ti alloy specimens
provide galvanic protection to the substrate and exhibit
better mechanical strength than do multilayer TiN/Ti/
TiN coatings which can be used only if they are defect-
free. Aluminum alloy 7075-T6é can support both
cathodic and anodic reactions, and therefore its ability
to provide galvanic protection to DU-0.75Ti alloy is
limited.
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